STM32 LL库 TIM3定时器多通道捕获输入采集

news/2024/6/3 18:01:01 标签: stm32, 嵌入式硬件, 单片机

为什么不用HAL库,使用HAL库捕获输入一个通道还尚可,多通道捕获由于HAL的回调函数不符合我的要求,干脆直接切换到LL库。网上找了许多,代码处理写的不符合我的要求,这里记录一下我的调试过程。
TIM2输出1路PWM信号,使用1分3杜邦线接到TIM3的CH2-CH3-CH4通道进行捕获输入。
在这里插入图片描述
在这里插入图片描述


#include "tim.h"

/* TIM2 init function */
void MX_TIM2_Init(void)
{

  LL_TIM_InitTypeDef TIM_InitStruct = {0};
  LL_TIM_OC_InitTypeDef TIM_OC_InitStruct = {0};

  LL_GPIO_InitTypeDef GPIO_InitStruct = {0};
  /* Peripheral clock enable */
  LL_APB1_GRP1_EnableClock(LL_APB1_GRP1_PERIPH_TIM2);


  TIM_InitStruct.Prescaler = 63;
  TIM_InitStruct.CounterMode = LL_TIM_COUNTERMODE_UP;
  TIM_InitStruct.Autoreload = 9999;
  TIM_InitStruct.ClockDivision = LL_TIM_CLOCKDIVISION_DIV1;
  LL_TIM_Init(TIM2, &TIM_InitStruct);
  LL_TIM_DisableARRPreload(TIM2);
  LL_TIM_SetClockSource(TIM2, LL_TIM_CLOCKSOURCE_INTERNAL);
  LL_TIM_OC_EnablePreload(TIM2, LL_TIM_CHANNEL_CH2);
  TIM_OC_InitStruct.OCMode = LL_TIM_OCMODE_PWM1;
  TIM_OC_InitStruct.OCState = LL_TIM_OCSTATE_DISABLE;
  TIM_OC_InitStruct.OCNState = LL_TIM_OCSTATE_DISABLE;
  TIM_OC_InitStruct.CompareValue = 5000;
  TIM_OC_InitStruct.OCPolarity = LL_TIM_OCPOLARITY_HIGH;
  LL_TIM_OC_Init(TIM2, LL_TIM_CHANNEL_CH2, &TIM_OC_InitStruct);
  LL_TIM_OC_DisableFast(TIM2, LL_TIM_CHANNEL_CH2);
  LL_TIM_SetTriggerOutput(TIM2, LL_TIM_TRGO_RESET);
  LL_TIM_DisableMasterSlaveMode(TIM2);
  /* USER CODE BEGIN TIM2_Init 2 */

  /* USER CODE END TIM2_Init 2 */
  LL_IOP_GRP1_EnableClock(LL_IOP_GRP1_PERIPH_GPIOB);
    /**TIM2 GPIO Configuration
    PB3     ------> TIM2_CH2
    */
  GPIO_InitStruct.Pin = LL_GPIO_PIN_3;
  GPIO_InitStruct.Mode = LL_GPIO_MODE_ALTERNATE;
  GPIO_InitStruct.Speed = LL_GPIO_SPEED_FREQ_LOW;
  GPIO_InitStruct.OutputType = LL_GPIO_OUTPUT_PUSHPULL;
  GPIO_InitStruct.Pull = LL_GPIO_PULL_NO;
  GPIO_InitStruct.Alternate = LL_GPIO_AF_2;
  LL_GPIO_Init(GPIOB, &GPIO_InitStruct);
	
	//-------------------------------------------
	LL_TIM_OC_SetCompareCH2(TIM2,2000);
	LL_TIM_CC_EnableChannel(TIM2,LL_TIM_CHANNEL_CH2);
	LL_TIM_EnableCounter(TIM2);

}
/* TIM3 init function */
void MX_TIM3_Init(void)
{
  LL_TIM_InitTypeDef TIM_InitStruct = {0};

  LL_GPIO_InitTypeDef GPIO_InitStruct = {0};

  /* Peripheral clock enable */
  LL_APB1_GRP1_EnableClock(LL_APB1_GRP1_PERIPH_TIM3);

  LL_IOP_GRP1_EnableClock(LL_IOP_GRP1_PERIPH_GPIOA);
  LL_IOP_GRP1_EnableClock(LL_IOP_GRP1_PERIPH_GPIOB);
  /**TIM3 GPIO Configuration
  PA7   ------> TIM3_CH2
  PB0   ------> TIM3_CH3
  PB1   ------> TIM3_CH4
  */
  GPIO_InitStruct.Pin = LL_GPIO_PIN_7;
  GPIO_InitStruct.Mode = LL_GPIO_MODE_ALTERNATE;
  GPIO_InitStruct.Speed = LL_GPIO_SPEED_FREQ_LOW;
  GPIO_InitStruct.OutputType = LL_GPIO_OUTPUT_PUSHPULL;
  GPIO_InitStruct.Pull = LL_GPIO_PULL_NO;
  GPIO_InitStruct.Alternate = LL_GPIO_AF_1;
  LL_GPIO_Init(GPIOA, &GPIO_InitStruct);

  GPIO_InitStruct.Pin = LL_GPIO_PIN_0;
  GPIO_InitStruct.Mode = LL_GPIO_MODE_ALTERNATE;
  GPIO_InitStruct.Speed = LL_GPIO_SPEED_FREQ_LOW;
  GPIO_InitStruct.OutputType = LL_GPIO_OUTPUT_PUSHPULL;
  GPIO_InitStruct.Pull = LL_GPIO_PULL_NO;
  GPIO_InitStruct.Alternate = LL_GPIO_AF_1;
  LL_GPIO_Init(GPIOB, &GPIO_InitStruct);

  GPIO_InitStruct.Pin = LL_GPIO_PIN_1;
  GPIO_InitStruct.Mode = LL_GPIO_MODE_ALTERNATE;
  GPIO_InitStruct.Speed = LL_GPIO_SPEED_FREQ_LOW;
  GPIO_InitStruct.OutputType = LL_GPIO_OUTPUT_PUSHPULL;
  GPIO_InitStruct.Pull = LL_GPIO_PULL_NO;
  GPIO_InitStruct.Alternate = LL_GPIO_AF_1;
  LL_GPIO_Init(GPIOB, &GPIO_InitStruct);

  /* TIM3 interrupt Init */
  NVIC_SetPriority(TIM3_IRQn, 0);
  NVIC_EnableIRQ(TIM3_IRQn);

  /* USER CODE BEGIN TIM3_Init 1 */

  /* USER CODE END TIM3_Init 1 */
  TIM_InitStruct.Prescaler = 63;
  TIM_InitStruct.CounterMode = LL_TIM_COUNTERMODE_UP;
  TIM_InitStruct.Autoreload = 65535;
  TIM_InitStruct.ClockDivision = LL_TIM_CLOCKDIVISION_DIV1;
  LL_TIM_Init(TIM3, &TIM_InitStruct);
  LL_TIM_DisableARRPreload(TIM3);
  LL_TIM_SetClockSource(TIM3, LL_TIM_CLOCKSOURCE_INTERNAL);
  LL_TIM_SetTriggerOutput(TIM3, LL_TIM_TRGO_RESET);
  LL_TIM_DisableMasterSlaveMode(TIM3);
	
  LL_TIM_IC_SetActiveInput(TIM3, LL_TIM_CHANNEL_CH2, LL_TIM_ACTIVEINPUT_DIRECTTI);
  LL_TIM_IC_SetPrescaler(TIM3, LL_TIM_CHANNEL_CH2, LL_TIM_ICPSC_DIV1);
  LL_TIM_IC_SetFilter(TIM3, LL_TIM_CHANNEL_CH2, LL_TIM_IC_FILTER_FDIV1);
  LL_TIM_IC_SetPolarity(TIM3, LL_TIM_CHANNEL_CH2, LL_TIM_IC_POLARITY_RISING);
	
  LL_TIM_IC_SetActiveInput(TIM3, LL_TIM_CHANNEL_CH3, LL_TIM_ACTIVEINPUT_DIRECTTI);
  LL_TIM_IC_SetPrescaler(TIM3, LL_TIM_CHANNEL_CH3, LL_TIM_ICPSC_DIV1);
  LL_TIM_IC_SetFilter(TIM3, LL_TIM_CHANNEL_CH3, LL_TIM_IC_FILTER_FDIV1);
  LL_TIM_IC_SetPolarity(TIM3, LL_TIM_CHANNEL_CH3, LL_TIM_IC_POLARITY_RISING);
	
  LL_TIM_IC_SetActiveInput(TIM3, LL_TIM_CHANNEL_CH4, LL_TIM_ACTIVEINPUT_DIRECTTI);
  LL_TIM_IC_SetPrescaler(TIM3, LL_TIM_CHANNEL_CH4, LL_TIM_ICPSC_DIV1);
  LL_TIM_IC_SetFilter(TIM3, LL_TIM_CHANNEL_CH4, LL_TIM_IC_FILTER_FDIV1);
  LL_TIM_IC_SetPolarity(TIM3, LL_TIM_CHANNEL_CH4, LL_TIM_IC_POLARITY_RISING);
	
  /* USER CODE BEGIN TIM3_Init 2 */
   LL_TIM_EnableIT_UPDATE(TIM3);//更新中断使能
   LL_TIM_EnableIT_CC2(TIM3);//捕获通道2使能
	 LL_TIM_EnableIT_CC3(TIM3);//捕获通道3使能
	 LL_TIM_EnableIT_CC4(TIM3);//捕获通道4使能
   LL_TIM_CC_EnableChannel(TIM3,LL_TIM_CHANNEL_CH2);//通道2使能
	 LL_TIM_CC_EnableChannel(TIM3,LL_TIM_CHANNEL_CH3);//通道3使能
	 LL_TIM_CC_EnableChannel(TIM3,LL_TIM_CHANNEL_CH4);//通道4使能
   LL_TIM_EnableCounter(TIM3);
 
  /* USER CODE END TIM3_Init 2 */

}



uint32_t  TIM3_OverCnt = 0;
int32_t  Value_Temp2 = 0;
int32_t  Value_Temp3 = 0;
int32_t  Value_Temp4 = 0;

uint32_t  TIM3_CH2_Capture_FristValue_1; 
uint32_t  TIM3_CH2_Capture_FristValue_2; 
uint32_t  TIM3_CH2_Capture_FristValue_3; 
uint32_t  TIM3_CH2_Capture_HighLevel; 
uint32_t  TIM3_CH2_Capture_LowLevel; 
uint8_t   TIM3_CH2_CaptureNumber;
//uint32_t  TIM3_CH2_Freq = 0;
//float 	  TIM3_CH2_Duty = 0;

uint32_t  TIM3_CH3_Capture_FristValue_1; 
uint32_t  TIM3_CH3_Capture_FristValue_2; 
uint32_t  TIM3_CH3_Capture_FristValue_3; 
uint32_t  TIM3_CH3_Capture_HighLevel; 
uint32_t  TIM3_CH3_Capture_LowLevel; 
uint8_t   TIM3_CH3_CaptureNumber;
//uint32_t  TIM3_CH3_Freq = 0;
//float 	  TIM3_CH3_Duty = 0;


uint32_t  TIM3_CH4_Capture_FristValue_1; 
uint32_t  TIM3_CH4_Capture_FristValue_2; 
uint32_t  TIM3_CH4_Capture_FristValue_3; 
uint32_t  TIM3_CH4_Capture_HighLevel; 
uint32_t  TIM3_CH4_Capture_LowLevel; 
uint8_t   TIM3_CH4_CaptureNumber;


void TIM3_CallBack(void)
{	
	//------------------------------------------CC2
		if(LL_TIM_IsActiveFlag_CC2(TIM3))
		{		
			 LL_TIM_ClearFlag_CC2(TIM3);
			
				if(TIM3_CH2_CaptureNumber == 0)
				{
						TIM3_OverCnt = 0;
						TIM3_CH2_CaptureNumber = 1;	
//					  LL_TIM_SetCounter(TIM3,0);	
				}
				else
					if(TIM3_CH2_CaptureNumber == 1)
					{	
						TIM3_CH2_Capture_FristValue_1 = LL_TIM_IC_GetCaptureCH2(TIM3);	// 获取当前的捕获值. 即CCRx2  
						//设置下降沿触发
						LL_TIM_IC_SetPolarity(TIM3,LL_TIM_CHANNEL_CH2,LL_TIM_IC_POLARITY_FALLING);						
						TIM3_CH2_CaptureNumber = 2;
						TIM3_OverCnt = 0;						
						
					}
					else
						if(TIM3_CH2_CaptureNumber == 2)
						{
							TIM3_CH2_Capture_FristValue_2 = LL_TIM_IC_GetCaptureCH2(TIM3);	// 获取当前的捕获值. 即CCRx2  
							if(TIM3_OverCnt >= 1)
							{								 						
								TIM3_CH2_Capture_HighLevel = TIM3_OverCnt * 65535 + TIM3_CH2_Capture_FristValue_2 - TIM3_CH2_Capture_FristValue_1;			
							}
							else
							{
								Value_Temp2 = TIM3_CH2_Capture_FristValue_2 - TIM3_CH2_Capture_FristValue_1;
								Value_Temp2 = Value_Temp2>0?Value_Temp2:0;							
								TIM3_CH2_Capture_HighLevel = TIM3_OverCnt * 65535 + Value_Temp2;
							}											
							//设置上升沿触发
							LL_TIM_IC_SetPolarity(TIM3,LL_TIM_CHANNEL_CH2,LL_TIM_IC_POLARITY_RISING);		
							TIM3_CH2_CaptureNumber = 3;
							TIM3_OverCnt = 0;
						}
					else
						if(TIM3_CH2_CaptureNumber == 3)
						{
							TIM3_CH2_Capture_FristValue_3 = LL_TIM_IC_GetCaptureCH2(TIM3);	// 获取当前的捕获值. 即CCRx2  
							
							if(TIM3_OverCnt >= 1)
							{
								TIM3_CH2_Capture_LowLevel = TIM3_OverCnt * 65535 + TIM3_CH2_Capture_FristValue_3 - TIM3_CH2_Capture_FristValue_2;							
							}
							else
							{
								Value_Temp2 = TIM3_CH2_Capture_FristValue_3 - TIM3_CH2_Capture_FristValue_2;
								Value_Temp2 = Value_Temp2>0?Value_Temp2:0;
								TIM3_CH2_Capture_LowLevel = TIM3_OverCnt * 65535 + Value_Temp2;							
							}
		//					//设置    沿触发
							LL_TIM_IC_SetPolarity(TIM3,LL_TIM_CHANNEL_CH2,LL_TIM_IC_POLARITY_FALLING);				
							TIM3_CH2_CaptureNumber = 4;
							TIM3_OverCnt = 0;
						}		
					else
						if(TIM3_CH2_CaptureNumber == 4)
						{
		//					//设置    沿触发
							LL_TIM_IC_SetPolarity(TIM3,LL_TIM_CHANNEL_CH2,LL_TIM_IC_POLARITY_RISING);				
							TIM3_CH2_CaptureNumber = 1;
							TIM3_OverCnt = 0;
						}					
		}		
	//------------------------------------------CC3
		if(LL_TIM_IsActiveFlag_CC3(TIM3))
		{	
			 LL_TIM_ClearFlag_CC3(TIM3);

				if(TIM3_CH3_CaptureNumber == 0)
				{
						TIM3_OverCnt = 0;
						TIM3_CH3_CaptureNumber = 1;	
//					  LL_TIM_SetCounter(TIM3,0);	
				}
				else
					if(TIM3_CH3_CaptureNumber == 1)
					{
						TIM3_OverCnt = 0;
					
						TIM3_CH3_Capture_FristValue_1 = LL_TIM_IC_GetCaptureCH3(TIM3);	// 获取当前的捕获值. 即CCRx2  
						//设置下降沿触发
						LL_TIM_IC_SetPolarity(TIM3,LL_TIM_CHANNEL_CH3,LL_TIM_IC_POLARITY_FALLING);						
						TIM3_CH3_CaptureNumber = 2;					
					}
					else
						if(TIM3_CH3_CaptureNumber == 2)
						{
							TIM3_CH3_Capture_FristValue_2 = LL_TIM_IC_GetCaptureCH3(TIM3);	// 获取当前的捕获值. 即CCRx2  
							if(TIM3_OverCnt >= 1)
							{			
								TIM3_CH3_Capture_HighLevel = TIM3_OverCnt * 65535 + TIM3_CH3_Capture_FristValue_2 - TIM3_CH3_Capture_FristValue_1;							
							}	
							else
							{
								Value_Temp3 = TIM3_CH3_Capture_FristValue_2 - TIM3_CH3_Capture_FristValue_1;
								Value_Temp3 = Value_Temp3>0?Value_Temp3:0;						
								TIM3_CH3_Capture_HighLevel = TIM3_OverCnt * 65535 + Value_Temp3;
							}	

							//设置上升沿触发
							LL_TIM_IC_SetPolarity(TIM3,LL_TIM_CHANNEL_CH3,LL_TIM_IC_POLARITY_RISING);			
							TIM3_CH3_CaptureNumber = 3;
							TIM3_OverCnt = 0;
						}
					else
						if(TIM3_CH3_CaptureNumber == 3)
						{
							TIM3_CH3_Capture_FristValue_3 = LL_TIM_IC_GetCaptureCH3(TIM3);	// 获取当前的捕获值. 即CCRx2  
							if(TIM3_OverCnt >= 1)
							{					
								TIM3_CH3_Capture_LowLevel = TIM3_OverCnt * 65535 + TIM3_CH3_Capture_FristValue_3 - TIM3_CH3_Capture_FristValue_2;								
							}	
							else
							{
								Value_Temp3 = TIM3_CH3_Capture_FristValue_3 - TIM3_CH3_Capture_FristValue_2;
								Value_Temp3 = Value_Temp3>0?Value_Temp3:0;							
								TIM3_CH3_Capture_LowLevel = TIM3_OverCnt * 65535 + Value_Temp3;
							}	

		//					//设置    沿触发
							LL_TIM_IC_SetPolarity(TIM3,LL_TIM_CHANNEL_CH3,LL_TIM_IC_POLARITY_FALLING);	
							TIM3_CH3_CaptureNumber = 4;
							TIM3_OverCnt = 0;
						}		
					else
						if(TIM3_CH3_CaptureNumber == 4)
						{
		//					//设置    沿触发
							LL_TIM_IC_SetPolarity(TIM3,LL_TIM_CHANNEL_CH3,LL_TIM_IC_POLARITY_RISING);		
							TIM3_CH3_CaptureNumber = 1;
							TIM3_OverCnt = 0;
						}				
		}
	//------------------------------------------CC4
		if(LL_TIM_IsActiveFlag_CC4(TIM3))
		{	
			 LL_TIM_ClearFlag_CC4(TIM3);

				if(TIM3_CH4_CaptureNumber == 0)
				{
						TIM3_OverCnt = 0;
						TIM3_CH4_CaptureNumber = 1;	
//					   LL_TIM_SetCounter(TIM3,0);	
				}
				else
					if(TIM3_CH4_CaptureNumber == 1)
					{
						TIM3_OverCnt = 0;
					
						TIM3_CH4_Capture_FristValue_1 = LL_TIM_IC_GetCaptureCH4(TIM3);	// 获取当前的捕获值. 即CCRx2  
						//设置下降沿触发
						LL_TIM_IC_SetPolarity(TIM3,LL_TIM_CHANNEL_CH4,LL_TIM_IC_POLARITY_FALLING);			
						TIM3_CH4_CaptureNumber = 2;
						
					}
					else
						if(TIM3_CH4_CaptureNumber == 2)
						{
							TIM3_CH4_Capture_FristValue_2 = LL_TIM_IC_GetCaptureCH4(TIM3);	// 获取当前的捕获值. 即CCRx2  
							if(TIM3_OverCnt >= 1)
							{					
								TIM3_CH4_Capture_HighLevel = TIM3_OverCnt * 65535 + TIM3_CH4_Capture_FristValue_2 - TIM3_CH4_Capture_FristValue_1;								
							}	
							else
							{
								Value_Temp4 = TIM3_CH4_Capture_FristValue_2 - TIM3_CH4_Capture_FristValue_1;
								Value_Temp4 = Value_Temp4>0?Value_Temp4:0;							
								TIM3_CH4_Capture_HighLevel = TIM3_OverCnt * 65535 + Value_Temp4;
							}	

							//设置上升沿触发
							LL_TIM_IC_SetPolarity(TIM3,LL_TIM_CHANNEL_CH4,LL_TIM_IC_POLARITY_RISING);			
							TIM3_CH4_CaptureNumber = 3;
							TIM3_OverCnt = 0;
						}
					else
						if(TIM3_CH4_CaptureNumber == 3)
						{
							TIM3_CH4_Capture_FristValue_3 = LL_TIM_IC_GetCaptureCH4(TIM3);	// 获取当前的捕获值. 即CCRx2  
							if(TIM3_OverCnt >= 1)
							{									
								TIM3_CH4_Capture_LowLevel = TIM3_OverCnt * 65535 + TIM3_CH4_Capture_FristValue_3 - TIM3_CH4_Capture_FristValue_2; 								
							}	
							else
							{
								Value_Temp4 = TIM3_CH4_Capture_FristValue_3 - TIM3_CH4_Capture_FristValue_2;
								Value_Temp4 = Value_Temp4>0?Value_Temp4:0;							
								TIM3_CH4_Capture_LowLevel = TIM3_OverCnt * 65535 + Value_Temp4; 
							}	

		//					//设置    沿触发
							LL_TIM_IC_SetPolarity(TIM3,LL_TIM_CHANNEL_CH4,LL_TIM_IC_POLARITY_FALLING);	
							TIM3_CH4_CaptureNumber = 4;
							TIM3_OverCnt = 0;
						}		
					else
						if(TIM3_CH4_CaptureNumber == 4)
						{
		//					//设置    沿触发
							LL_TIM_IC_SetPolarity(TIM3,LL_TIM_CHANNEL_CH4,LL_TIM_IC_POLARITY_RISING);		
							TIM3_CH4_CaptureNumber = 1;
							TIM3_OverCnt = 0;
							
						}				
		} 
 	
		
		
 	//------------------------------------------Update
		if(LL_TIM_IsActiveFlag_UPDATE(TIM3))
		{	
			LL_TIM_ClearFlag_UPDATE(TIM3); //每次溢出时间为65536us
			TIM3_OverCnt++;
		}
				

		 
}

#ifndef __TIM_H__
#define __TIM_H__

#ifdef __cplusplus
extern "C" {
#endif

/* Includes ------------------------------------------------------------------*/
#include "main.h"


void MX_TIM2_Init(void);
void MX_TIM3_Init(void);
void TIM3_CallBack(void);


#ifdef __cplusplus
}
#endif

#endif /* __TIM_H__ */


#include "main.h"
#include "tim.h"
#include "gpio.h"

 
void SystemClock_Config(void);
 
int main(void)
{
 
  HAL_Init();

 
  SystemClock_Config();

 
  MX_GPIO_Init();
  MX_TIM2_Init();
  MX_TIM3_Init();
 
  while (1)
  {
 
  }
 
}

/**
  * @brief This function handles TIM3 global interrupt.
  */
void TIM3_IRQHandler(void)
{
 
	TIM3_CallBack();
 
}

http://www.niftyadmin.cn/n/5184725.html

相关文章

003.文件描述符、重定向

1、文件描述符 文件描述符是与输入和输出流相关联的整数。最广为人知的文件描述符是stdin、stdout和stderr。我们可以将某个文件描述符的内容重定向到另一个文件描述符中。 在编写脚本的时候会频繁用到标准输入(stdin)、标准输出(stdout&am…

.NET 8.0 中有哪些新的变化?

1性能提升 .NET 8在整个堆栈中带来了数千项性能改进 。默认情况下会启用一种名为动态配置文件引导优化 (PGO) 的新代码生成器,它可以根据实际使用情况优化代码,并且可以将应用程序的性能提高高达 20%。现在支持的 AVX-512 指令集能够对 512 位数据向量执…

001 opencv addWeighted

目录 一、环境 二、addWeighted函数 三、代码演示 一、环境 本文使用环境为: Windows10Python 3.9.17opencv-python 4.8.0.74 二、addWeighted函数 OpenCV中的cv.addWeighted函数是一个用于图像叠加的函数,它可以将两个具有相同尺寸和类型的图像按…

无法在 DLL“SQLite.Interop.dll”中找到名为”sIb4c632894b76cc1d“

做项目,碰到这个问题,网上的解决办法都是 更换sqlite版本去解决 在我这里不适用 我这里的项目是一个主项目 下面挂载了很多其子项目 解决办法是 把子项目 和 主项目 更换为统一的sqlite版本 , 如果统一更换后还不可以 就把主项目下生成的 (一定要确保主项目下的sqlite版本一定是…

剑指offer(C++)-JZ39:数组中出现次数超过一半的数字(算法-其他)

作者:翟天保Steven 版权声明:著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处 题目描述: 给一个长度为 n 的数组,数组中有一个数字出现的次数超过数组长度的一半,请找出这个…

【k8s集群搭建(二):基于虚拟机的linux的k8s集群搭建_超详细_可视化界面Dashboard安装_记录全过程踩坑记录及解决方法】

在 master 执行 # 根据 在线配置文件 创建资源 kubectl apply -f https://raw.githubusercontent.com/kubernetes/dashboard/v2.3.1/aio/deploy/recommended.yaml设置访问端口 # 修改配置文件 找到 type,将 ClusterIP 改成 NodePort kubectl edit svc kubernetes-…

初试 jmeter做压力测试

一.前言 压力测试是每一个Web应用程序上线之前都需要做的一个测试,他可以帮助我们发现系统中的瓶颈问题,减少发布到生产环境后出问题的几率;预估系统的承载能力,使我们能根据其做出一些应对措施。所以压力测试是一个非常重要的步…

数学概念(mathematical concepts)持续更新

这里作为算法与数学的置顶文章,意图在于帮大家搞清楚各种概念。 1. 误差和残差 2. 直线表示方法 3. 向量