STM32F407: CMSIS-DSP库的移植(基于库文件)

news/2024/6/3 18:33:04 标签: stm32, 嵌入式硬件, 单片机, CMSIS-DSP

目录

1. 源码下载

2. DSP库源码简介

3.基于库的移植(DSP库的使用)

3.1 实验1

3.2 实验2

4. 使用V6版本的编译器进行编译


上一篇:STM32F407-Discovery的硬件FPU-CSDN博客

1. 源码下载

Github地址:GitHub - ARM-software/CMSIS_5: CMSIS Version 5 Development Repository

最新版本是5.9.0,也可以使用HAL库里自带的,本文基于STM32Cube_FW_F4_V1.27.0里自带的DSP版本

2. DSP库源码简介

目录结构如下:\Drivers\CMSIS\DSP

Example:官方自带的一些示例

Include:公共头文件夹目录,其中比较重要的是arm_math.h

Projects:官方自带的工程示例

Source:DSP的源码实现,是重点目录

Source目录下各个文件夹实现功能简介如下表:

文件夹

实现的功能(API)

BasicMathFunctions

实现基本数学函数,有浮点/定点/向量等基本运算

CommonTables

一些公用的参数表

ComplexMathFunctions

复数的计算:加减乘除、取模等

ControllerFunctions

一些控制功能函数:比如PID控制算法

FastMathFunctions

纯数学理论实现的一些快速计算算法:求正余弦/快速开方

FilteringFunctions

滤波功能的实现:IIR/FIR/LMS/求卷积等

MatrixFunctions

矩阵运算相关API:加减法、转置、求逆等

StatisticsFunctions

常用的统计学方法:求均值/方差/标准差/均方根等

SupportFunctions

功能性函数:数据拷贝(连续的一大块)/定点浮点之间的转换

TransformFunctions

变换函数实现:复数/实数的FFT/IFFT以及离散余弦变换DCT

对应的DSP LIB库:\Drivers\CMSIS\Lib\ARM:

STM32F4是M4内核,FPU支持单精度浮点数据运算,小端模式,所以:arm_cortexM4lf_math.lib是重点文件。

3.基于库的移植(DSP库的使用)

仿照源代码库文件所在的目录结构,新建文件夹:Drivers\CMSIS\Lib\ARM

然后直接拷贝arm_cortexM4lf_math.lib到ARM目录下。

仿照源代码库的目录结构,新建文件夹:Drivers\CMSIS\DSP\Include

同样将源码目录中的三个头文件拷贝过来:

将库文件添加到Keil工程,并且添加头文件路径:

到此,库的移植已经完毕,接下来是预处理定义一些宏。

(1) 首先是硬件FPU要开启:取决于__FPU_PRESENT__FPU_USED

详见上一篇:STM32F407-Discovery的硬件FPU-CSDN博客

(2) 使用DSP库中的基本数学运算实现,比如sin()/cos():ARM_MATH_DSP

(3) 如果使用矩阵运算,则矩阵大小是个很值得注意的问题,运算前要对输入矩阵的大小进行检查:ARM_MATH_MATRIX_CHECK

(4) 浮点数转 Q32/Q15/Q7 时,处理四舍五入,最大限度确保数据精度不丢失: ARM_MATH_ROUNDING

(5) 批量处理数据时,加快执行速度,比如批量求绝对值: ARM_MATH_LOOPUNROLL

(6) 最后是CM4内核的一个宏:ARM_MATH_CM4

把这些添加到全局的宏定义中:

USE_HAL_DRIVER,STM32F407xx,USE_STM32F4_DISCO,ARM_MATH_MATRIX_CHECK,ARM_MATH_ROUNDING,ARM_MATH_LOOPUNROLL,ARM_MATH_CM4

3.1 实验1

对比MDK标准库函数和DSP库函数的计算速度。

Main.c

/* Includes ------------------------------------------------------------------*/
#include "main.h"

#define DELTA   0.0001f         /* 误差值 */
extern TIM_HandleTypeDef g_timx_handle;
uint8_t g_timeout;

/**
 * @brief       sin cos 测试
 * @param       angle : 起始角度
 * @param       times : 运算次数
 * @param       mode  : 是否使用DSP库
 *   @arg       0 , 不使用DSP库;
 *   @arg       1 , 使用DSP库;
 *
 * @retval      无
 */
uint8_t sin_cos_test(float angle, uint32_t times, uint8_t mode)
{
    float sinx, cosx;
    float result;
    uint32_t i = 0;

    if (mode == 0)
    {
        for (i = 0; i < times; i++)
        {
            cosx = cosf(angle);                 /* 不使用DSP优化的sin,cos函数 */
            sinx = sinf(angle);
            result = sinx * sinx + cosx * cosx; /* 计算结果应该等于1 */
            result = fabsf(result - 1.0f);      /* 对比与1的差值 */

            if (result > DELTA)return 0XFF;     /* 判断失败 */

            angle += 0.001f;                    /* 角度自增 */
        }
    }
    else
    {
        for (i = 0; i < times; i++)
        {
            cosx = arm_cos_f32(angle);          /* 使用DSP优化的sin,cos函数 */
            sinx = arm_sin_f32(angle);
            result = sinx * sinx + cosx * cosx; /* 计算结果应该等于1 */
            result = fabsf(result - 1.0f);      /* 对比与1的差值 */

            if (result > DELTA)return 0XFF;     /* 判断失败 */

            angle += 0.001f;                    /* 角度自增 */
        }
    }

    return 0;                                   /* 任务完成 */
}

int main(void)
{
	float time;
	uint8_t res;

	/* STM32F4xx HAL library initialization:
	- Configure the Flash prefetch, instruction and Data caches
	- Configure the Systick to generate an interrupt each 1 msec
	- Set NVIC Group Priority to 4
	- Global MSP (MCU Support Package) initialization
	*/
	HAL_Init();
/* Configure the system clock to 168 MHz */
	SystemClock_Config();

	/* 串口2初始化: 只用tx功能 */
	if(uart2_init(9600))
	{
		Error_Handler();
	}

#if 1
//	BSP_LED_Off(LED6);
//	HAL_Delay(200);
//
//	BSP_LED_On(LED6);
//	//HAL_Delay(1000);
//	//test_fpu_tmp1();
//	fft_test();
//	BSP_LED_Off(LED6);
//	for (int i=0; i <N; i++) { //打印很耗时
//		printf("ifft: OUTPUT_SEQ[%d].real=%f, OUTPUT_SEQ[%d].img=%f\n", i, OUTPUT_SEQ[i].real, i, OUTPUT_SEQ[i].img);
//	}
//	printf("\n\n");

   //不用GPIO来测量时长了,改用定时器
	btim_timx_int_init(65535, 8400 - 1);
	__HAL_TIM_SET_COUNTER(&g_timx_handle, 0); /* 重设TIM6定时器的计数器值 */
	g_timeout = 0;
	 res = sin_cos_test(PI / 6, 200000, 0);
	//HAL_Delay(1000);

	time = __HAL_TIM_GET_COUNTER(&g_timx_handle) + (uint32_t)g_timeout * 65536;
    printf("%0.1fms\r\n", time / 10);

	/* 使用DSP优化 */
	__HAL_TIM_SET_COUNTER(&g_timx_handle, 0);                           /* 重设TIM6定时器的计数器值 */
	g_timeout = 0;
	res = sin_cos_test(PI / 6, 200000, 1);
	time = __HAL_TIM_GET_COUNTER(&g_timx_handle) + (uint32_t)g_timeout * 65536;
	printf("%0.1fms\r\n", time / 10);
#endif

	printf("__CC_ARM:%d\n", __CC_ARM);
	printf("__FPU_PRESENT:%d\n", __FPU_PRESENT);
	printf("__FPU_USED:%d\n", __FPU_USED);
	printf("SCB->CPACR:0x%x\n", SCB->CPACR);

	while(1){
		;
	}

	return 0;
}

/**
  * @brief  System Clock Configuration
  *         The system Clock is configured as follow :
  *            System Clock source            = PLL (HSE)
  *            SYSCLK(Hz)                     = 168000000
  *            HCLK(Hz)                       = 168000000
  *            AHB Prescaler                  = 1
  *            APB1 Prescaler                 = 4
  *            APB2 Prescaler                 = 2
  *            HSE Frequency(Hz)              = 8000000
  *            PLL_M                          = 8
  *            PLL_N                          = 336
  *            PLL_P                          = 2
  *            PLL_Q                          = 7
  *            VDD(V)                         = 3.3
  *            Main regulator output voltage  = Scale1 mode
  *            Flash Latency(WS)              = 5
  * @param  None
  * @retval None
  */
static void SystemClock_Config(void)
{
  RCC_ClkInitTypeDef RCC_ClkInitStruct;
  RCC_OscInitTypeDef RCC_OscInitStruct;

  /* Enable Power Control clock */
  __HAL_RCC_PWR_CLK_ENABLE();

  /* The voltage scaling allows optimizing the power consumption when the device is
     clocked below the maximum system frequency, to update the voltage scaling value
     regarding system frequency refer to product datasheet.  */
  __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);


  /* Enable HSE Oscillator and activate PLL with HSE as source */
  RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
  RCC_OscInitStruct.HSEState = RCC_HSE_ON;
  RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
  RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
  RCC_OscInitStruct.PLL.PLLM = 8;
  RCC_OscInitStruct.PLL.PLLN = 336;
  RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2;
  RCC_OscInitStruct.PLL.PLLQ = 7;

  if(HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
  {
    Error_Handler();
  }

  /* Select PLL as system clock source and configure the HCLK, PCLK1 and PCLK2
     clocks dividers */
  RCC_ClkInitStruct.ClockType = (RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2);
  RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
  RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
  RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV4;
  RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV2;
  if(HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_5) != HAL_OK)
  {
    Error_Handler();
  }

  /* STM32F405x/407x/415x/417x Revision Z devices: prefetch is supported  */
  if (HAL_GetREVID() == 0x1001)
  {
    /* Enable the Flash prefetch */
    __HAL_FLASH_PREFETCH_BUFFER_ENABLE();
  }
}

运行结果如下:

[22:54:44.691]  315.0ms  //使用库函数

[22:54:44.851]  153.9ms  //使用DSP

[22:54:44.851]  __CC_ARM:1

[22:54:44.867]  __FPU_PRESENT:1

[22:54:44.883]  __FPU_USED:1

[22:54:44.898]  SCB->CPACR:0xf00000

3.2 实验2

测量计算1024个点的复数FFT运行时长

main.c

/* FFT长度,如果不指定,则默认是1024个点
 * 长度可选范围: 16, 64, 256, 1024.
 */
#define FFT_LENGTH      1024

float fft_inputbuf[FFT_LENGTH * 2];     /* FFT输入数组 */
float fft_outputbuf[FFT_LENGTH];        /* FFT输出数组 */
uint8_t g_timeout;
extern TIM_HandleTypeDef g_timx_handle;

int main(void)
{
	float time;
	uint8_t res;
	int i;
	arm_cfft_radix4_instance_f32 scfft;

	/* STM32F4xx HAL library initialization:
	- Configure the Flash prefetch, instruction and Data caches
	- Configure the Systick to generate an interrupt each 1 msec
	- Set NVIC Group Priority to 4
	- Global MSP (MCU Support Package) initialization
	*/
	HAL_Init();

	/* Configure the system clock to 168 MHz */
	SystemClock_Config();

	/* 串口2初始化: 只用tx功能 */
	if(uart2_init(9600))
	{
		Error_Handler();
	}

	/* 初始化scfft结构体,设置相关参数 */
	arm_cfft_radix4_init_f32(&scfft, FFT_LENGTH, 0, 1);

#if 1
	/* 初始化输入序列 */
	for (i = 0; i < FFT_LENGTH; i++)
	{
		fft_inputbuf[2 * i] = 100 +
													10 * arm_sin_f32(2 * PI * i / FFT_LENGTH) +
													30 * arm_sin_f32(2 * PI * i * 4 / FFT_LENGTH) +
													50 * arm_cos_f32(2 * PI * i * 8 / FFT_LENGTH);    /* 实部 */
		fft_inputbuf[2 * i + 1] = 0;    /* 虚部: 都是0 */
	}
	
	btim_timx_int_init(65535, 8400 - 1);
	__HAL_TIM_SET_COUNTER(&g_timx_handle, 0); /* 重设TIM6定时器的计数器值 */
	g_timeout = 0;

	arm_cfft_radix4_f32(&scfft, fft_inputbuf);                      /* FFT(基4) */

	/* 计算运行时间 */
	time =__HAL_TIM_GET_COUNTER(&g_timx_handle) + (uint32_t)g_timeout * 65536;
	printf("%0.1fms\r\n", time / 10);

	arm_cmplx_mag_f32(fft_inputbuf, fft_outputbuf, FFT_LENGTH);     /* 求模 */

	printf("\r\n%d point FFT runtime:%0.1fms\r\n", FFT_LENGTH, time / 10);
//	printf("FFT Result:\r\n");

//	for (i = 0; i < FFT_LENGTH; i++)
//	{
//		printf("fft_outputbuf[%d]:%f\r\n", i, fft_outputbuf[i]);
//	}
#endif

	printf("__CC_ARM:%d\n", __CC_ARM);
	printf("__FPU_PRESENT:%d\n", __FPU_PRESENT);
	printf("__FPU_USED:%d\n", __FPU_USED);
	printf("SCB->CPACR:0x%x\n", SCB->CPACR);

	while(1){
		;
	}

	return 0;
}

打印:大概是0.6ms完成一个1024点的复数运算

[23:39:30.141]  0.6ms

[23:39:30.141]  

[23:39:30.141]  1024 point FFT runtime:0.0ms

[23:39:30.172]  __CC_ARM:1

[23:39:30.188]  __FPU_PRESENT:1

[23:39:30.204]  __FPU_USED:1

[23:39:30.220]  SCB->CPACR:0xf00000

4. 使用V6版本的编译器进行编译

编译出现一堆错:ArmClang: error: unsupported option '--C99'

将--C99改为-xc -std=c99即可:

更改如下:

注:

(1)如果要用V5编译器,则该选项要改回--C99

(2)V6版本的编译器对浮点数运算有做优化,将优化等级配置为fast mode后,相对V5版本有明显速度的提升,如下:

AC6版本编译器配置

基于上面的实验2:运行结果用了0.5ms

[10:47:32.200]  test_fft()->times: 0.500000ms

[10:47:32.232]  __FPU_PRESENT:1

[10:47:32.248]  __FPU_USED:1

[10:47:32.264]  SCB->CPACR:0xf00000

关于MDK5的AC5,AC6编译器对比,可以参考这个论坛:

https://www.armbbs.cn/forum.php?mod=viewthread&tid=95455

测试代码:main.c

/**
  ******************************************************************************
  * @file    UART/UART_TwoBoards_ComPolling/Src/main.c
  * @author  MCD Application Team
  * @brief   This sample code shows how to use STM32F4xx UART HAL API to transmit
  *          and receive a data buffer with a communication process based on
  *          polling transfer.
  *          The communication is done using 2 Boards.
  ******************************************************************************
  * @attention
  *
  * Copyright (c) 2017 STMicroelectronics.
  * All rights reserved.
  *
  * This software is licensed under terms that can be found in the LICENSE file
  * in the root directory of this software component.
  * If no LICENSE file comes with this software, it is provided AS-IS.
  *
  ******************************************************************************
  */

/* Includes ------------------------------------------------------------------*/
#include "main.h"

/** @addtogroup STM32F4xx_HAL_Examples
  * @{
  */

/** @addtogroup UART_TwoBoards_ComPolling
  * @{
  */

/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
#define TRANSMITTER_BOARD

/* Private function prototypes -----------------------------------------------*/
static void SystemClock_Config(void);
static void Error_Handler(void);

/* Private functions ---------------------------------------------------------*/

extern TIM_HandleTypeDef g_timx_handle;
uint8_t g_timeout;

float re_dat;
float a=0.14f;
float b=0.26f;

void test_fpu_tmp1(void)
{
		long i, j;
		float re_nul;
		float time;

		/* 初始化定时器6 */
		btim_timx_int_init(65535, 8400 - 1);
		/* 重设TIM6定时器的计数器值 */
		__HAL_TIM_SET_COUNTER(&g_timx_handle, 0);
		g_timeout = 0;

		for(i=0; i<10000; i++) {
			for(j=0; j<2; j++) {
				re_nul=a*b;
				re_dat=re_dat+re_nul;
				a=a+0.1f;
				b=b+0.1f;
			}
		}

		/* 计算运行时间 */
		time =__HAL_TIM_GET_COUNTER(&g_timx_handle) + (uint32_t)g_timeout * 65536;
		printf("%s()->times: %fms\r\n", __func__, time / 10);

		btim_timx_int_deinit(65535, 8400 - 1);
		printf("re_dat:%f\n", re_dat);

}

complex INPUT_SEQ[FFT_LEN], RES_SEQ[FFT_LEN], OUTPUT_SEQ[FFT_LEN];
float SEQ_DAT[FFT_LEN], dataR[FFT_LEN], dataI[FFT_LEN];
int fft_priv_test(void)
{
		int i, j;
		float time;

		//构造实数序列
		for (i=0; i < FFT_LEN; i++) {
			SEQ_DAT[i]=i+0.0f;
		}

		//构造虚数序列
		for (j=0; j<FFT_LEN; j++) {
			INPUT_SEQ[j].real= SEQ_DAT[j];
			INPUT_SEQ[j].img=0.0f;
		}

//		for (i=0; i <FFT_LEN; i++) {
//			printf("before fft: INPUT_SEQ[%d].real=%f, INPUT_SEQ[%d].img=%f\n", i, INPUT_SEQ[i].real, i, INPUT_SEQ[i].img);
//		}
//		printf("\n\n");

		/* 初始化定时器6 */
		btim_timx_int_init(65535, 8400 - 1);
		/* 重设TIM6定时器的计数器值 */
		__HAL_TIM_SET_COUNTER(&g_timx_handle, 0);
		g_timeout = 0;

#if 1
		FFT(INPUT_SEQ, FFT_LEN, FFT_ORDER, RES_SEQ);
//		for (i=0; i <FFT_LEN; i++) {
//			printf("fft: RES_SEQ[%d].real=%f, RES_SEQ[%d].img=%f\n", i, RES_SEQ[i].real, i, RES_SEQ[i].img);
//		}
//		printf("\n\n");

		iFFT(RES_SEQ, FFT_LEN, FFT_ORDER, OUTPUT_SEQ);
		/* 计算运行时间 */
		time =__HAL_TIM_GET_COUNTER(&g_timx_handle) + (uint32_t)g_timeout * 65536;
		printf("%s()->times: %fms\r\n", __func__, time / 10);

		btim_timx_int_deinit(65535, 8400 - 1);

#else
		HAL_Delay(1000);
#endif

//		for (i=0; i <FFT_LEN; i++) { //打印很耗时
//			printf("ifft: OUTPUT_SEQ[%d].real=%f, OUTPUT_SEQ[%d].img=%f\n", i, OUTPUT_SEQ[i].real, i, OUTPUT_SEQ[i].img);
//		}
//		printf("\n\n");

		return 0;
}

#define DELTA   0.0001f         /* 误差值 */

/**
 * @brief       sin cos 测试
 * @param       angle : 起始角度
 * @param       times : 运算次数
 * @param       mode  : 是否使用DSP库
 *   @arg       0 , 不使用DSP库;
 *   @arg       1 , 使用DSP库;
 *
 * @retval      无
 */
uint8_t sin_cos_test(float angle, uint32_t times, uint8_t mode)
{
    float sinx, cosx;
    float result;
		float time;
    uint32_t i = 0;

		/* 初始化定时器6 */
		btim_timx_int_init(65535, 8400 - 1);
		/* 重设TIM6定时器的计数器值 */
		__HAL_TIM_SET_COUNTER(&g_timx_handle, 0);
		g_timeout = 0;

    if (mode == 0)
    {
    		printf("not use DSP\n");
        for (i = 0; i < times; i++)
        {
            cosx = cosf(angle);                 /* 不使用DSP优化的sin,cos函数 */
            sinx = sinf(angle);
            result = sinx * sinx + cosx * cosx; /* 计算结果应该等于1 */
            result = fabsf(result - 1.0f);      /* 对比与1的差值 */

            if (result > DELTA)return 0XFF;     /* 判断失败 */

            angle += 0.001f;                    /* 角度自增 */
        }
    }
    else
    {
    		printf("use DSP\n");
        for (i = 0; i < times; i++)
        {
            cosx = arm_cos_f32(angle);          /* 使用DSP优化的sin,cos函数 */
            sinx = arm_sin_f32(angle);
            result = sinx * sinx + cosx * cosx; /* 计算结果应该等于1 */
            result = fabsf(result - 1.0f);      /* 对比与1的差值 */

            if (result > DELTA)return 0XFF;     /* 判断失败 */

            angle += 0.001f;                    /* 角度自增 */
        }
    }

		/* 计算运行时间 */
		time =__HAL_TIM_GET_COUNTER(&g_timx_handle) + (uint32_t)g_timeout * 65536;
		printf("%s()->times: %fms\r\n", __func__, time / 10);

		btim_timx_int_deinit(65535, 8400 - 1);
    return 0;                                   /* 任务完成 */
}


/******************************************************************/
/* FFT长度,如果不指定,则默认是1024个点
 * 长度可选范围: 16, 64, 256, 1024.
 */
#define FFT_LENGTH	1024
float fft_inputbuf[FFT_LENGTH * 2];     /* FFT输入数组 */
float fft_outputbuf[FFT_LENGTH];        /* FFT输出数组 */

void test_fft(void)
{
		int i;
		float time;
		arm_cfft_radix4_instance_f32 scfft;

		/* 初始化scfft结构体,设置相关参数 */
		arm_cfft_radix4_init_f32(&scfft, FFT_LENGTH, 0, 1);

		/* 初始化输入序列 */
		for (i = 0; i < FFT_LENGTH; i++)
		{
			/* 实部 */
			fft_inputbuf[2 * i] = 100 +
														10 * arm_sin_f32(2 * PI * i / FFT_LENGTH) +
														30 * arm_sin_f32(2 * PI * i * 4 / FFT_LENGTH) +
														50 * arm_cos_f32(2 * PI * i * 8 / FFT_LENGTH);
			/* 虚部: 都是0 */
			fft_inputbuf[2 * i + 1] = 0;
		}

		/* 初始化定时器6 */
		btim_timx_int_init(65535, 8400 - 1);
		/* 重设TIM6定时器的计数器值 */
		__HAL_TIM_SET_COUNTER(&g_timx_handle, 0);
		g_timeout = 0;

		/* FFT(基4) */
		arm_cfft_radix4_f32(&scfft, fft_inputbuf);

		/* 计算运行时间 */
		time =__HAL_TIM_GET_COUNTER(&g_timx_handle) + (uint32_t)g_timeout * 65536;
		printf("%s()->times: %fms\r\n", __func__, time / 10);

		/* 求模 */
//		arm_cmplx_mag_f32(fft_inputbuf, fft_outputbuf, FFT_LENGTH);
//
//		printf("\r\n%d point FFT runtime:%0.1fms\r\n", FFT_LENGTH, time / 10);
//		printf("FFT Result:\r\n");
//
//		for (i = 0; i < FFT_LENGTH; i++)
//		{
//			printf("fft_outputbuf[%d]:%f\r\n", i, fft_outputbuf[i]);
//		}
		btim_timx_int_deinit(65535, 8400 - 1);
}
/******************************************************************/

int main(void)
{
		uint8_t res;

		/* STM32F4xx HAL library initialization:
		- Configure the Flash prefetch, instruction and Data caches
		- Configure the Systick to generate an interrupt each 1 msec
		- Set NVIC Group Priority to 4
		- Global MSP (MCU Support Package) initialization
		*/
		HAL_Init();

		/* Configure the system clock to 168 MHz */
		SystemClock_Config();

		/* 串口2初始化: 只用tx功能 */
		if(uart2_init(9600))
		{
			Error_Handler();
		}

#if 1
			test_fft();
//		res=sin_cos_test(PI / 6, 200000, 0);
//		res=sin_cos_test(PI / 6, 200000, 1);
//		res=fft_priv_test();
//		test_fpu_tmp1();
#endif

		//printf("__CC_ARM:%d\n", __CC_ARM);
		printf("__FPU_PRESENT:%d\n", __FPU_PRESENT);
		printf("__FPU_USED:%d\n", __FPU_USED);
		printf("SCB->CPACR:0x%x\n", SCB->CPACR);

		while(1){
			;
		}

		return 0;
}

/**
  * @brief  System Clock Configuration
  *         The system Clock is configured as follow :
  *            System Clock source            = PLL (HSE)
  *            SYSCLK(Hz)                     = 168000000
  *            HCLK(Hz)                       = 168000000
  *            AHB Prescaler                  = 1
  *            APB1 Prescaler                 = 4
  *            APB2 Prescaler                 = 2
  *            HSE Frequency(Hz)              = 8000000
  *            PLL_M                          = 8
  *            PLL_N                          = 336
  *            PLL_P                          = 2
  *            PLL_Q                          = 7
  *            VDD(V)                         = 3.3
  *            Main regulator output voltage  = Scale1 mode
  *            Flash Latency(WS)              = 5
  * @param  None
  * @retval None
  */
static void SystemClock_Config(void)
{
  RCC_ClkInitTypeDef RCC_ClkInitStruct;
  RCC_OscInitTypeDef RCC_OscInitStruct;

  /* Enable Power Control clock */
  __HAL_RCC_PWR_CLK_ENABLE();

  /* The voltage scaling allows optimizing the power consumption when the device is
     clocked below the maximum system frequency, to update the voltage scaling value
     regarding system frequency refer to product datasheet.  */
  __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);


  /* Enable HSE Oscillator and activate PLL with HSE as source */
  RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
  RCC_OscInitStruct.HSEState = RCC_HSE_ON;
  RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
  RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
  RCC_OscInitStruct.PLL.PLLM = 8;
  RCC_OscInitStruct.PLL.PLLN = 336;
  RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2;
  RCC_OscInitStruct.PLL.PLLQ = 7;

  if(HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
  {
    Error_Handler();
  }

  /* Select PLL as system clock source and configure the HCLK, PCLK1 and PCLK2
     clocks dividers */
  RCC_ClkInitStruct.ClockType = (RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2);
  RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
  RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
  RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV4;
  RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV2;
  if(HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_5) != HAL_OK)
  {
    Error_Handler();
  }

  /* STM32F405x/407x/415x/417x Revision Z devices: prefetch is supported  */
  if (HAL_GetREVID() == 0x1001)
  {
    /* Enable the Flash prefetch */
    __HAL_FLASH_PREFETCH_BUFFER_ENABLE();
  }
}

/**
  * @brief  UART error callbacks
  * @param  UartHandle: UART handle
  * @note   This example shows a simple way to report transfer error, and you can
  *         add your own implementation.
  * @retval None
  */
void HAL_UART_ErrorCallback(UART_HandleTypeDef *UartHandle)
{
  /* Turn LED3 on: Transfer error in reception/transmission process */
  BSP_LED_On(LED3);
}


/**
  * @brief  This function is executed in case of error occurrence.
  * @param  None
  * @retval None
  */
static void Error_Handler(void)
{
  /* Turn LED5 on */
  BSP_LED_On(LED5);
  while(1)
  {
  }
}

#ifdef  USE_FULL_ASSERT

/**
  * @brief  Reports the name of the source file and the source line number
  *         where the assert_param error has occurred.
  * @param  file: pointer to the source file name
  * @param  line: assert_param error line source number
  * @retval None
  */
void assert_failed(uint8_t* file, uint32_t line)
{
  /* User can add his own implementation to report the file name and line number,
     ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */

  /* Infinite loop */
  while (1)
  {
  }
}
#endif

/**
  * @}
  */

/**
  * @}
  */

下一篇:


http://www.niftyadmin.cn/n/5178829.html

相关文章

【nlp】1.2文本张量表示方法(词向量word2seq和词嵌入Word Embedding)

文本张量的表示方法 1 one-hot词向量表示1.1 实操演示1.2 one-hot编码使用1.3 one-hot编码的优劣势2 word2vec模型2.1 模型介绍2.2 word2dev的训练和使用2.2.1 数据集的下载与预处理2.2.2 词向量的训练2.2.3 查询单词对应的词向量2.2.4 模型效果检验2.2.5 网络超参数设定3 词嵌…

FreeRTOS-信号量

1. 二进制信号量创建&#xff08;Binary Semaphore&#xff09; 函数原型 //该函数不接受任何参数&#xff0c;并返回一个指向新创建的二进制信号量的句柄&#xff08;即 SemaphoreHandle_t 类型&#xff09;。 SemaphoreHandle_t xSemaphoreCreateBinary( void );应用程序可…

【QT进阶】第十二章QT事件的使用

❤️作者主页:凉开水白菜 ❤️作者简介:共同学习,互相监督,热于分享,多加讨论,一起进步! ❤️专栏目录:【零基础学QT】文章导航篇 ❤️专栏资料:https://pan.baidu.com/s/192A28BTIYFHmixRcQwmaHw 提取码:qtqt ❤️点赞 👍 收藏 ⭐再看,养成习惯 订阅的粉丝可通过…

条码管理在WMS仓储管理系统中的应用

在当今快节奏的商业环境中&#xff0c;仓储管理对于企业的运营和成本控制具有重要意义。为了提高管理效率和准确性&#xff0c;越来越多的企业开始采用条码管理WMS系统。本文将介绍这一系统的应用场景、条码引入WMS仓储管理系统的步骤以及其在仓储管理中的应用价值&#xff0c;…

nvm工具解决nodejs版本切换问题

常见版本问题 npm启动vite项目报错&#xff0c;信息如下 npm run dev> my-vue-app0.0.0 dev D:\data\code\document-assistant-web > vitefile:///D:/data/code/document-assistant-web/node_modules/vite/bin/vite.js:7await import(source-map-support).then((r) >…

MATLAB程序设计课后作业二

作业1&#xff1a; 利用randn 建立一个1000个数的数组&#xff0c; 任意选定一个数*10 作为异常值&#xff0c;编制三 倍标准差法程序&#xff0c;选出该值。 x randn(1000,1); x(183) x(183) * 10; %计算均值和标准差 mu mean(x); sigma std(x); % 计算上下限 upper mu …

[IJKPLAYER]基于DEMO分析IJKPLAYER(整理版本)

背景 博主主要是从事C语言开发&#xff0c;因此本文着重强调FFMPEG部分&#xff0c;关于JAVA应用和框架层只是一笔带过。IJKPLAYER的实质是对FFMPEG项目中的ffplayer程序进行的二次封装&#xff0c;通过JNI方式完成对外提供JAVA接口。 1.目录结构 activities:包含了demo的所有…

Linux 文件系统Ramfs, rootfs and initramfs

文章目录 前言一、ramfs简介二、ramfs 和 ram disk比较三、ramfs 和 tmpfs的比较四、rootfs五、initramfs六、Populating initramfs七、External initramfs images八、Contents of initramfs九、Why cpio rather than tar?十、Future directions 前言 这篇文章参考内核官方文…